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Introduction

Memory Efficient Training. Since there is no inter-rotation interaction
between rotation channels, we are allowed to train the network within
only one rotation channel, but then other R-1 rotation channels are
created at inference.

smaller and more GPU efficient. Table 2 summarizes the comparison
between models in terms of segmentation performance, model size
and the amount of GPU memory required for training. Fig 3 and Fig 4
show examples of predictions generated by different methods.
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Digital histology imaging of biopsy tissue can be captured at arbitrary
orientations and magnification, resulting in cells appearing in
different scales. Incorporating rotation or scale equivariance into

CNNs has proved to be effective in improving models” generalization Params GPU N; v R ID Testing OOD Testing
erformance. In this paper, we introduce Rotation-Scale Equivariant - , Type M) (GB) GlaS® CRAG" GlaS CRAG
IS)t bl Filter (RSESF]?) P Feoh atilires filter stoerabilit nqu - Datasets. .1) Gland Segmentation (GlaS) datat§et, 2) Colorectal —nN 2085 448 64 1 1 7565 7520 5419 6986
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scale-spacg theory to pa1.”ameter1ze Conv.olutlonal filters, .re.sultmg N Eyaluation Regime. In order to evaluate models’ generalization E(2)CNN - 03 -65 8 1 8 8419 87.91 5292  80.79
an equivariant layer that is stable to rotation and scale variations. capacity to rotation and scale variations, we design the Out-Of-  H-Nets 1398 765 64 1 1 7247 7444 5763  59.34
L ' SDCF 9.66 509 16 4 1 8343 8275  40.13  68.43
N T I Distribution (OOD) test, as the complement of the normally used In- ey gg5 506 16 4 1 s smss 50 6o
—— (Th - b Fig 1) Distribution (ID) test. See Table 1 for detail. SEUNet 122 505 16 4 1 8250 8438 5891  80.30
ilter Construction. e visual 1llustration 1s shown in F1
i & Eval Regime Training Images Testing Images RST-CNN 015 506 2 4 8 7706 7837 4290  6LI5
. S 3 - RST-CNN 1.36 1512 6 4 8 8408  85.09 5643  72.02
Fe(chx,y,0%,0p5¢t7h) = z Qi ol l-1 Gy (X Y0k ) 1<k <y, 0, = —1=sr=R1) ID Randomly rotated, re-scaled Randomly rotated, re-scaled RSESF 1.22 5060 16 4 1,8 8310 85.00 60.60 82.15
| | l,]>.0 00D Original Ran domly rotated, Re-scaled Table 2. quel Size vs. mloU vs. GPU Re.quirement. Cplumn§ N¢, v, R denote the
Equlvarlant Convolution. number of filters, scale channels, and rotation channels in the first layer of the UNet,
respectively.

The first layer (I=1):

Table 1. Details of ID and OOD setting.
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Fig 1. The construction process of an RSESF filter (with 4 scale channels, 4 rotation
channels, 1 input channel and 5 output channels) as matrix multiplication.
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Fig 3. Some visual clues of how equivariant models demonstrate superiority on

different versions of test images.
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Code available at: https

ithub.com/ynulonger/RSESF
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