MEDIMP: 3D Medical Images with clinical Prompts from limited tabular data for renal transplantation

הוכל

L. Milecki¹, V. Kalogeiton², S. Bodard^{3,4}, D. Anglicheau^{3,4}, J.-M. Correas^{3,4}, M.-O. Timsit^{3,4}, M. Vakalopoulou¹

¹ MICS, CentraleSupelec, Paris-Saclay University, Inria Saclay, France Nashville 2023 ² LIX, École Polytechnique/CNRS, Institut Polytechnique de Paris, France ³ HEGP, Necker Hospital, Paris University, France ⁴ UFR Médecine, Paris-Cité University, France

Université de Paris

CONTEXT

- Renal transplantation: best solution for endstage renal disease¹; But risk of transplant chronic dysfunction²
- Graft monitoring is multi-disciplinary (nephrology, urology, radiology)
- Goal: learning relevant representations of renal transplants MRI data with coupled clinicobiological information

MOTIVATIONS

- Recent advances in NLP (LLMs^{3,4}): textual data perfect candidate for weakly-supervised tasks
- Multi-modal pretraining using multiview **contrastive learning** for jointly training an image and text encoder: CLIP⁵ for natural images, ConVIRT⁶ for medical images and radiology reports.

CONTRIBUTIONS

- Semi-automatic medical prompt generation from tabular data to leverage the expressive representation of textual data from NLP models
- Extending existing works on combining text with imaging data by integrating limited 3D medical imaging and textual data and fine-tuning strategies

Image

Encoder

 χ_i

OVERVIEW

 $\mathcal{L}_{i \to t}$

F	011	.ow-up 1								
	Follow-up 2									
	F	ollow-up 3			X					
		Follow-up	<mark>4</mark>							
-			Variable A	Variable B	•••					
		Patient 1	value	value						
		Patient 2								
	L	•••								

Sentence templates for clinical attributes

- The age of the donor is high.
- The glomerular filtration rate is very low.
- At first-year follow-up exam.
- The creatinine level was unstable.

Large Language Model prompting

1. Medical clinical prompts generation

MATERIALS & METHODS

- **Dataset: 105 patients** subject to kidney transplantation having **DCE MRI** series at 4 follow-up exams (Train/Validation: 72/5, Test: 28).
- 1. Medical clinical prompts generation

Renal transplant MRI

The age of the kidney donor is high. The patient's glomerular filtration rate was measured to be very low at the firstfollow-up appointment. year The creatinine levels showed unstable variation.

Weak text annotations

 $\mathcal{L}_{contrastive} = (\mathcal{L}_{i \to t} + \mathcal{L}_{t \to i})/2$

2. Representation learning setup

Our visual features encode the clinicobiological information

incorporated from the medical prompts in the multimodal learning

- Categorize continuous variables into text labels
- Produce one template sentence per variable
- Use of LLMs to produce textual data augmentations

2. Representation learning setup

- Image encoder: 3D ResNet50 initialized with CLIP⁵ weights
- Text encoder: BERT initialized with Bio+Clinical BERT⁷
- Fine tune only the last layer of the text encoder transformer
- Multiview contrastive learning using $\mathcal{L}_{contrastive} = (\mathcal{L}_{i \to t} + \mathcal{L}_{t \to i})/2$

with
$$\mathcal{L}_{i \rightarrow t} = \sum_{b=1}^{B} -\log \frac{e^{\cos(f_{ib}, f_{tb})/\tau}}{\sum_{k=1}^{B} e^{\cos(f_{ib}, f_{tk})/\tau}}$$

• Downstream task from the image encoder

RESULTS

Table 1: Comparison of MEDIMP vs SOTA. Evaluation at 2,3,4 years posttransplantation and report the mean. Ablations in weak annotations from either the comparison CosEmbLoss pretaining or our proposed generated textual data. **Figure 1**: t-SNE visualizations of the features of the last layer of MEDIMP image encoder using the DCE MRI exams.

Mathad	Weak annotations			2 years		3 years		4 years		Mean		
wethou	GFR	Exam	Creat	D.A.	AUC	F1	AUC	F1	AUC	F1	AUC	F1
CLIP weights					62.6	73.7	52.5	78.1	51.3	54.6	55.5	68.8
CosEmbLoss ⁸	\checkmark				76.2	86.2	77.8	70.6	67.0	77.3	73.6	78.1
CosEmbLoss++	\checkmark			\checkmark	<u>84.4</u>	<u>88.9</u>	82.5	86.4	73.9	<u>85.7</u>	<u>80.3</u>	<u>87.0</u>
CosEmbLoss++	\checkmark		\checkmark	\checkmark	78.2	87.0	75.0	83.3	74.8	87.0	76.0	85.8
CosEmbLoss++	\checkmark	\checkmark	\checkmark	\checkmark	75.5	85.7	62.0	69.8	63.5	80.9	67.0	78.8
MEDIMP	\checkmark				56.5	83.3	51.9	79.1	49.6	90.2	52.6	84.2
MEDIMP	\checkmark	\checkmark		\checkmark	76.9	73.2	86.3	<u>85.7</u>	<u>74.8</u>	90.2	79.3	83.0
MEDIMP	\checkmark	\checkmark	\checkmark		72.8	86.4	71.9	81.0	71.3	71.8	72.0	79.7
MEDIMP	\checkmark	\checkmark	\checkmark	\checkmark	85.0	89.4	<u>84.4</u>	83.7	75.7	90.2	81.7	87.8

CONCLUSION

We introduced an approach to learn **powerful manifolds of renal transplant DCE MRI** data toward transplant function forecasting, providing:

- an elegant way to incorporate clinical or biological information into the learning process of feature extraction of medical imaging data;
- presented representation learning strategy enabling us to outperform the state of the art in the challenging task of creatinine prediction;
- promising results advocating the use textual data from emerging LLMs to assist in training robust medical imaging models.

Acknowledgments & References:

Work performed using HPC resources from the "Mésocentre" (CentraleSupelec, Ecole Normale Supérieure Paris-Saclay) supported by CNRS, Région IIe-de-France, and from IDRIS (2022-AD011013541). ¹Suthanthiran et al. Renal transplantation. 1994. ²Hariharan *et al.* Long-term survival after kidney transplantation. 2021.

³T. Brown *et al.* Language models are few-shot learners. NeurIPS. 2020.

⁵A. Radford *et al.*, Learning transferable visual models from natural language supervision. 2021. ⁷Alsentzer *et al.* Publicly available clinical BERT embeddings. 2019.

⁴OpenAI. Chatgpt: Optimizing language models for dialogue, 2022.

⁶Y. Zhang et al., Contrastive learning of medical visual representations from paired images and text. 2020. ⁸Milecki *et al.* Contrastive masked transformers for forecasting renal transplant function. 2022.

