

Attri-Net: Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals

¹University of Tübingen, ²University of Erlangen-Nuremberg

susu.sun@uni-tuebingen.de

Susu Sun¹, Stefano Woerner¹, Andreas Maier², Lisa M. Koch¹, Christian F. Baumgartner¹

Motivation

Problem:

- Interpretability is important for high-stakes medical applications.
- Deep Neural Networks are difficult to explain.
- Widely used post-hoc explanations have several drawbacks.

Contributions:

- We designed an **inherently interpretable multilabel** classification model Attri-Net.
- Interpretability is inherent through linear models that use human-understandable attribution maps for classification.

Counterfactual Attribution Map

Class-Specific Counterfactual Attribution Map $M_c(\mathbf{x})$

- is an additive map that highlights disease-relevant regions.
- the summed image $\hat{\mathbf{x}} = \mathbf{x} + M_c(\mathbf{x})$ appears to come from the negative class c = 0.

Attri-Net Framework

- Class Attribution Generator: generates class-specific counterfactual attribution map $M_c(\mathbf{x})$ to identify disease effects in image \mathbf{x} corresponding to certain disease class c (blue box in figure).
- Classification Layers: classify only based on counterfactuals with simple logistic regression classifiers (red box in figure).
- Task Switching Mechanism: makes multi-label classification possible by injecting specific diagnostic tasks to the generator through Adaptive Instance Normalization layers (AdaIN modules in figure).

Human interpretable counterfactual attribution map + interpretable linear classifier -> inherent interpretability

Quantitative Evaluation

Class sensitivity property requires distinct attribution maps for disease-positive and disease-negative images.

Class Sensitivity Score:

$$s_{c} = \frac{1}{Z} \sum_{p_{c=1} \in I_{c=1}} p_{c=1}$$
with $Z = \sum_{k} \sum_{p_{c=1} \in I_{k}} p_{c=1}$

 $p_{c=1}$: attributions show postive disease effects at localization p.

Attri-Net achieves higher class sensitivity scores than other explanation methods on three datasets.

Model	CheXpert	ChestX-ray8	VindrCXR
ResNet + GB	0.3183	0.3028	0.1727
ResNet + GCam	0.1434	0.1570	0.1931
ResNet + LIME	0.2347	0.2609	0.2422
ResNet + SHAP	0.4745	0.4122	0.3714
ResNet + Gifsplan.	0.2748	0.5817	0.4396
CoDA-Nets	0.3576	0.4138	0.4464
ours	0.4880	0.6160	0.5509

2×2 grid on Cardiomegaly

Training

We train Attri-Net end-to-end with four loss terms to meet ensure attribution maps:

- preserve sufficient class relevant information for classification.
- are human-interpretable.

Overall loss for Class Attribution Generator:

$$\min_{\varphi} \sum_{c} \lambda_{\mathsf{cls}} \mathcal{L}_{\mathsf{cls}}^{(c)} + \lambda_{\mathsf{adv}} \mathcal{L}_{\mathsf{adv}}^{(c)} + \lambda_{\mathsf{reg}} \mathcal{L}_{\mathsf{reg}}^{(c)} + \lambda_{\mathsf{ctr}} \mathcal{L}_{\mathsf{ctr}}^{(c)}$$

Classification Peformance

Attri-Net achieves comparable classification performance with both black box model and interpretable model on three datasets.

Model	CheXpert	ChestX-ray8	VindrCXR
ResNet50	0.7727	0.7445	0.8986
CoDA-Nets	0.7659	0.7727	0.9322
ours	0.7405	0.7762	0.9405

Qualitative Evaluation

Attri-Net highlights regions associated with specific diseases that are consistent with clinical knowledge.

Attri-Net generates distinct patterns for different diseases, making the attribution maps more human-understandable.

