Attri-Net: Inherently Interpretable Multi-Label Classification
Using Class-Specific Counterfactuals

Susu Sun', Stefano Woerner', Andreas Maier?, Lisa M. Koch', Christian F. Baumgartner’

'University of Tiibingen, “University of Erlangen-Nuremberg
susu.sun@uni-tuebingen.de

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Training

We train Attri-Net end-to-end with four loss terms to
meet ensure attribution maps:
e preserve sufficient class relevant information for
classification.

Motivation Attri-Net Framework

Problem:

e Interpretability is important for high-stakes medical
applications.
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e Deep Neural Networks are difficult to explain. 0 cardiomegaly

e are human-interpretable.

e Widely used post-hoc explanations have several 0.795
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Task t.

Counterfactual Attribution Map

- S M (x) (b) Classification layers Model | CheXpert | ChestX-ray8 | VindrCXR
Class-Specific Counterfactual Attribution Map 1/ (x) e Class Attribution Generator: generates class-specific counterfactual attribution map M. (x) to identify disease ResNet50 | 0.7727 0.7445 0.8986
e is an additive map that highlights disease-relevant effects in image x corresponding to certain disease class ¢ (blue box in figure). CoDA-Nets | 0.7659 0.7727 0.9322
regions. cge 1 : L - : -
& e Classification Layers: classify only based on counterfactuals with simple logistic regression classifiers ( ours 0.7405 0.7762 0.9405

e the summed image x = x + M, (x) appears to
come from the negative class ¢ = 0.
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e Task Switching Mechanism: makes multi-label classification possible by injecting specific diagnostic tasks to

the generator through Adaptive Instance Normalization layers (AdaIN modules in figure).

Human interpretable counterfactual attribution map + interpretable linear classifier -> inherent interpretability

Class sensitivity property requires distinct attribution maps for disease-positive and disease-negative images.

Class Sensitivity Score:
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p.—1: attributions show postive disease effects at local-
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Attri-Net highlights regions associated with specific
diseases that are consistent with clinical knowledge.
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Attri-Net generates distinct patterns for different dis-
eases, making the attribution maps more human-
understandable.
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scores than other explanation methods on ResNet + LIME 0.2347 0.2609 0.2422 o comolisten ~ ]
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