CREATIS LIRIS

Whole-brain radiomics for clustered federated personalization in brain tumor segmentation

*Matthis Manthe*¹⁻²,

Motivation

• Federated learning (FL) enables to efficiently train deep neural models on large decentralized datasets without sharing raw data between health institutions,

- It underperforms with statistically heterogeneous distributed data,
- Personalization methods mostly assume local datasets homogeneity, hardly true in realistic cases,
- Clustered FL is particularly interesting in case of limited amount of data per institution.

Brain tumor segmentation

- **Dataset :** Federated Brain Tumor Segmentation 2022 (**FeTS2022**¹⁰),
- Input : 1251 3D *T1*, *T1ce*, *T2*, *FLAIR* brain MRIs.
- **Task :** Multi-label brain tumor segmentation : Enhancing tumor (*ET*), Tumor core (*TC*) and Whole tumor (*WT*),
- **Partitioning :** original 23 clinical institutions (~61%) with less than 15 samples),
- **Model**: 3D U-Net (~1.4M parameters).

Institution 1		X			
Institution 2					
Institution 12			A A A		
	Flair	Τ1	Tlce	T2	Labels

Stefan Duffner², Carole Lartizien¹

- Each institution extracts *intensity* (median, energy, ...) and *texture* (GLCM, GLRLM, ...) metrics from each of its volumes : **93 features** per modality and volume.
- The server performs standard clustering on the features of every institution : feature normalization PCA GMM
- After several rounds of standard FL (such as FedAvg), the server performs federated trainings in parallel on the C clusters of decentralized data, based on the following sample-level clustered federated objective with C clusters

$$\{w_{c}^{*}\}_{c=1}^{C} = \underset{\{w_{c}\}_{c=1}^{C} \in \mathcal{W}^{C}}{argmin} \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} l(w_{Cluster(\hat{f}_{k,i})}, w_{c}) + \frac{1}{2} \sum_{i=1}^{K} \frac{1}{2} \sum_{i=1}^{n_{k}} \frac{1}{2} \sum_{i=1}^{n_{k}}$$

Segmentation performance

	Training algorithm	Average	TC	WT	\mathbf{ET}	
	Centralized	0.8912 ± 0.1201	0.8896 ± 0.1878	0.9188 ± 0.0859	0.8651 ± 0.1956	
Dice	FedAvg	0.8803 ± 0.1414	0.8722 ± 0.2251	0.9099 ± 0.0906	0.8588 ± 0.2005	
	Local finetuning	0.8879 ± 0.1202	0.8876 ± 0.1863	0.9132 ± 0.0891	0.8629 ± 0.1960	
	CFFT_{ideal}	0.8887 ± 0.1239	0.8867 ± 0.1891	0.9139 ± 0.0892	0.8654 ± 0.1960	
	\mathbf{CFFT}	0.8874 ± 0.1254	0.8799 ± 0.2056	0.9120 ± 0.0907	0.8704 ± 0.1852	
			α.Ř			
	Training algorithm	Average	TC	WT	ET	
	Centralized	5.1348 ± 6.2212	4.4407 ± 7.2052	7.0318 ± 11.0671	3.7770 ± 8.5314	
	FedAvg	5.8854 ± 7.7368	4.7745 ± 8.0444	8.8814 ± 15.9499	3.7091 ± 7.6837	
Sta	Local finetuning	5.9334 ± 7.9817	4.8587 ± 9.3901	8.9284 ± 16.3270	3.5861 ± 7.5650	
°,	CFFT_{ideal}	5.5915 ± 7.2588	4.6436 ± 7.3390	8.3688 ± 15.3738	3.5383 ± 7.5576	
n	CEET	E 9740 1 7 C109	1 7250 1 7 4450	0 0700 1 10 4701	2.0590 ± 7.0901	

[Training algorithm	Average	TC	WT	\mathbf{ET}
[Centralized	0.8912 ± 0.1201	0.8896 ± 0.1878	0.9188 ± 0.0859	0.8651 ± 0.1956
Ce	FedAvg	0.8803 ± 0.1414	0.8722 ± 0.2251	0.9099 ± 0.0906	0.8588 ± 0.2005
	Local finetuning	0.8879 ± 0.1202	0.8876 ± 0.1863	0.9132 ± 0.0891	0.8629 ± 0.1960
	CFFT_{ideal}	0.8887 ± 0.1239	0.8867 ± 0.1891	0.9139 ± 0.0892	0.8654 ± 0.1960
	\mathbf{CFFT}	0.8874 ± 0.1254	0.8799 ± 0.2056	0.9120 ± 0.0907	0.8704 ± 0.1852
£	Training algorithm	Average	TC	WT	ET
	Centralized	5.1348 ± 6.2212	4.4407 ± 7.2052	7.0318 ± 11.0671	3.7770 ± 8.5314
aus	FedAvg	5.8854 ± 7.7368	4.7745 ± 8.0444	8.8814 ± 15.9499	3.7091 ± 7.6837
Ha Sta	Local finetuning	5.9334 ± 7.9817	4.8587 ± 9.3901	8.9284 ± 16.3270	3.5861 ± 7.5650
di di	CFFT_{ideal}	5.5915 ± 7.2588	4.6436 ± 7.3390	8.3688 ± 15.3738	3.5383 ± 7.5576
90	CFFT	5.8749 ± 7.6108	4.7359 ± 7.4458	8.8709 ± 16.4791	3.6520 ± 7.6291

CFFT matches the performance of other personalization methods while focusing only on the feature shift.

¹CREATIS, CNRS (UMR 5220), INSERM (U1294), INSA Lyon, Université de Lyon, ²LIRIS, CNRS (UMR 5205), INSA Lyon, Université Claude Bernard Lyon 1, Université Lumière Lyon 2, Ecole Centrale Lyon

matthis.manthe@insa-lyon.fr

 $x_{k,i}, y_{k,i}$

- assigned to cluster 7
- Sample-level federated clustering requires communicating features for each sample, risking sensitive information leakage.
- Attack setup : train a neural network to reconstruct a subsampled volume based on its radiomic features.
- **Results** : <u>Quick overfitting</u>, feature vectors contain only global textural information, tumorous parts are completely withdrawn from the reconstructions.

Conclusion and future work

- datasets homogeneity is too idealistic,
- to FedAvg,
- convergence of federated algorithms on each cluster.

Acknowledgments

This work has been partially supported by the Agence Nationale de la Recherche under grant ANR-20-THIA-0007 (IADoc@UdL). This work was granted access to the HPC resources of IDRIS under the allocation 2022-AD011013327 made by GENCI

• The standard personalized federated learning assumption of local

• The isolation of the feature shift in radiomic embeddings and clustered federated finetuning do improve the segmentation performance compared

• We will explore more complex and rich embeddings to further improve the