
● Federated learning (FL) enables to efficiently train 
deep neural models on large decentralized datasets 
without sharing raw data between health institutions, 

● It underperforms with statistically heterogeneous 
distributed data,

● Personalization methods mostly assume local 
datasets homogeneity, hardly true in realistic cases,

● Clustered FL is particularly interesting in case of 
limited amount of data per institution.

Whole-brain radiomics for clustered federated 
personalization in brain tumor segmentation

Motivation

Brain tumor segmentation
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● Dataset : Federated Brain Tumor Segmentation 
2022 (FeTS202210),

● Input : 1251 3D T1, T1ce, T2, FLAIR brain MRIs.

● Task : Multi-label brain tumor segmentation : 
Enhancing tumor (ET), Tumor core (TC) and Whole 
tumor (WT),

● Partitioning : original 23 clinical institutions (~61% 
with less than 15 samples),

● Model : 3D U-Net (~1.4M parameters).
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Clustered Federated Finetuning (CFFT) Clustering analysis

Basic privacy validation
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● Each institution extracts intensity (median, energy, …) and texture (GLCM, 
GLRLM, …) metrics from each of its volumes : 93 features per modality and 
volume.

● The server performs standard clustering on the features of every institution : 
feature normalization PCA GMM

● After several rounds of standard FL (such as FedAvg), the server performs 
federated trainings in parallel on the C clusters of decentralized data, based 
on the following sample-level clustered federated objective with C 
clusters

Segmentation performance

CFFT matches the performance of other personalization methods 
while focusing only on the feature shift. 
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● Volumes from a single institution can have very 
different appearance.

● They are placed in different clusters, with volumes of 
other institutions of similar appearance,

● Label distributions are a lot more alike between 
clusters than between institutions.

Conclusion and future work

● The standard personalized federated learning assumption of local 
datasets homogeneity is too idealistic,

● The isolation of the feature shift in radiomic embeddings and clustered 
federated finetuning do improve the segmentation performance compared 
to FedAvg,

● We will explore more complex and rich embeddings to further improve the 
convergence of federated algorithms on each cluster.

● Sample-level federated clustering requires 
communicating features for each sample, 
risking sensitive information leakage.

● Attack setup : train a neural network to 
reconstruct a subsampled volume based on 
its radiomic features.

● Results : Quick overfitting, feature vectors 
contain only global textural information, 
tumorous parts are completely withdrawn 
from the reconstructions.

MRI exam of  institution 4 
assigned to cluster 4

MRI exam of  institution 4 
assigned to cluster 7

Label distribution per computed cluster
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