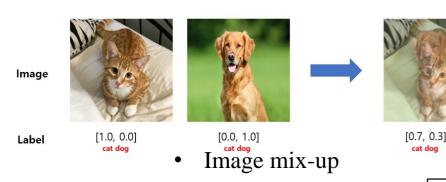
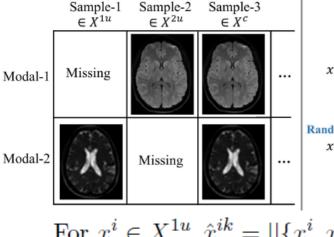
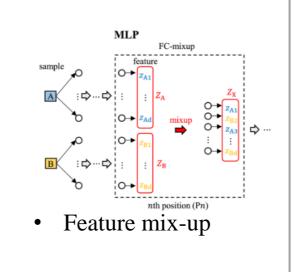


Incomplete Functional and Structural Connectome for Brain Disorder Diagnosis with Modal-mixup and Deep Supervision

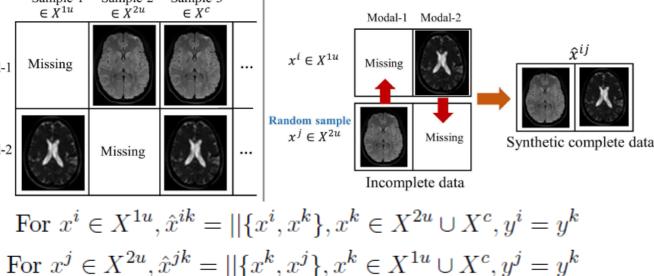
Yanwu Yang, Xutao Guo, Zhikai Chang, Chenfei Ye Yang Xiang, Haiyan Lv and Ting Ma HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN


Background

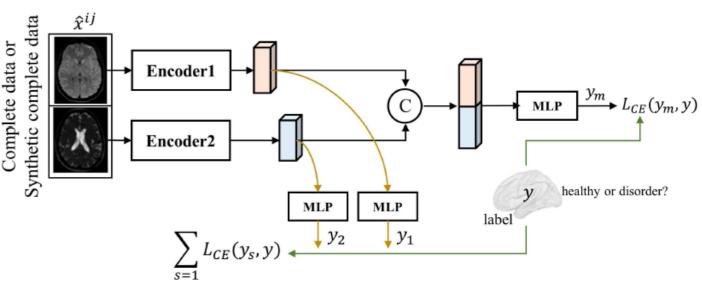

- Hard to collect
- Limited data samples •
- Incomplete scans


Method

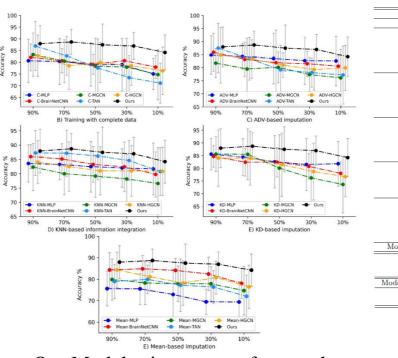
Modal-mixup



A) Formulation of samples



B) Modal-mixup



Bilateral Network with Deep Supervison

- Deep-supervision can also be a self-knowledge distillation for selfsupervised learning
- Mono-modal representations are regularized with disease-specific information for classification.

Experiments and Results

- Our Modal-mixup outperforms other approaches
- More details can be seen in our paper.

			ADNI Dataset	
Type	Model	ACC	Sen	F1
	MLP	75.08 ± 6.64	75.66 ± 7.94	75.08 ± 6.64
	BrainNetCNN	77.95 ± 4.84	81.67 ± 12.62	77.95 ± 4.84
С	M-GCN	74.77 ± 10.73	77.644 ± 9.89	75.91 ± 12.57
	Triplenet	71.14 ± 8.51	76.17 ± 9.92	71.14 ± 8.51
	HGCN	76.44 ± 10.09	74.38 ± 9.47	80.35 ± 9.18
ADV	MLP	82.58 ± 9.44	81.13 ± 8.82	85.15 ± 8.11
	BrainNetCNN	80.56 ± 4.11	79.80 ± 7.03	80.56 ± 4.11
	M-GCN	76.09 ± 10.91	76.56 ± 13.33	76.09 ± 10.91
	Triplenet	77.20 ± 11.08	77.35 ± 14.84	81.90 ± 7.21
	HGCN	79.92 ± 8.61	79.18 ± 12.67	79.92 ± 8.61
KNN	MLP	81.67±9.02	81.93 ± 10.25	83.99 ± 8.48
	BrainNetCNN	79.77±7.87	88.10 ± 10.43	79.77 ± 7.87
	M-GCN	76.59 ± 12.51	81.82 ± 14.47	78.71 ± 10.62
	Triplenet	80.76 ± 8.33	82.23 ± 10.63	80.76 ± 8.34
	HGCN	80.83 ± 8.43	84.52 ± 11.39	80.83 ± 8.43
KD	MLP	81.80±8.76	80.47 ± 9.97	81.80 ± 8.76
	BrainNetCNN	78.03 ± 4.49	86.85 ± 11.15	78.03 ± 4.49
	M-GCN	73.64 ± 11.20	81.43 ± 15.97	73.64 ± 11.20
	HGCN	76.71 ± 7.88	84.83 ± 9.50	76.71 ± 7.88
Mean	MLP	69.39 ± 9.58	74.05 ± 15.09	69.39 ± 9.58
	BrainNetCNN	78.03 ± 6.93	82.61 ± 13.30	78.03 ± 6.92
	M-GCN	74.69 ± 11.33	74.03 ± 11.14	74.69 ± 11.33
	Triplenet	72.04 ± 9.83	83.27 ± 14.77	72.05 ± 9.83
	HGCN	76.44 ± 10.09	74.38 ± 9.47	76.44 ± 10.09
dal-mixup	Deep-supervision (ours)	84.21±7.52	89.79 ± 10.84	84.21±7.52

dal-mixup	deep-supervision	10%	30%	50%	70%	90%
~		82.65 ± 9.98	83.41 ± 5.76	84.39 ± 9.85	85.15 ± 5.34	86.14 ± 7.64
\checkmark	√	84.21±7.52	86.97 ± 6.79	87.48 ± 8.87	88.71 ± 6.55	87.95 ± 10.01