Abstract

Accurate detection of 3D landmarks is critical for
evaluating and characterizing anatomical features and
performing preoperative diagnostic screening. Detecting 3D
landmarks can be challenging due to the local structural
homogeneity of medical images. Physicians often annotate
multiple landmarks in the key slice to address this 1ssue,
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Methods

The coarse stage takes the entire downsampled 1image as input and
incorporates structural knowledge. Given an entire image containing n
landmarks with ground truth (x, y, z), we employ a ResNet-34 for coordinate
regression. We modify the output length of the fully connected layer to 3 X N
and use regression loss to train the network.

The fine stage focuses on extracting local features around multiple
landmarks using patch based Unets. To effectively exploit physicians’ prior

particularly when estimating 3D distance or volume. (x,y,2) knowledge, we categorize the landmarks into independent and correlated

In this study, we present a prior guided coarse-to-fine ' according to the physicians’ annotation practice. For independent landmarks,
framework for efficient and accurate 3D medical landmark 5~N(0, %) physicians separately annotate them based on local texture features, each U-
detection; We utilize prior knowledge that in specific settings, Net will extract features and predict heatmaps for the corresponding patch.
physicians annotate multiple landmarks on the same slice. The For the correlated landmarks, physicians typically identify particular slices
coarse stage uses coordinate regression on downsampled 3D containing the complete organ’s characteristics and annotate correlated
images . The fine stage categorizes landmarks as independent landmarks on those slices. We design an axis attention module and key slice
and correlated landmarks based on their annotation prior. Our detection for key slice querying and landmark detection
method 1s extensively evaluated on two datasets, exhibiting ’ Axis attention: we utilize different encoders to handle the correlated
superior performance with an average detection error of 3.29 I | patches separately, we deeply fuse axis features for key slice detection.
mm and 2.13 mm, respectively. Axis attention _ | Inspired by the CBAM module, we propose axis channel attention and

@ Slige Cetection spatial attention to perform dynamically weighted refining F, =F X M, X
I ntl' o d u cti o n g d M.. Axis 1s defined as the direction perpendicular to the key slice.
= (X) mmp l?ll‘l M. = a(Convixix1(Fa.) + Convixixi(Fy,,))-

3D landmark detection methods have advanced from key % ) M, = 0(Convixix1[Fyazs Favgl)-
slice classification to coordinate and heatmap regression with 3D l Key slice detection: To improve the localization accuracy in the axial
CNNs. Typically, 3D medical images are downsampled to of Favg: Fimax M

direction, we introduce a slice detection branch to determine the key slice
and constrain the attention map. We use 1D convolutions to decode the high-
level features and use a Gaussian heatmap to represent the probability of the
key slice’s location

relatively low resolution to reduce network parameters which
may cause 1nevitable errors. Coarse-to-fine strategies may
relieve the accuracy degradation issue caused by downsampling.
Although most previous methods delved into the model
structure, the loss function, etc, they 1gnored the prior knowledge
of medical annotation

Medical images’ local structural similarity often leads to
ambiguity 1n landmark localization, especially in 3D cases
wherein adjacent slices have similar structural and intensity
profiles. In such context, physicians often annotate landmarks
with specific landmarks serving as references or annotate
multiple landmarks on a same key slice as shown in panel (b).
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Table 1: Performance comparisons in PDDCA dataset and prostate dataset. and I re-
P P ' i Among all methods, our proposed method performs the

best on PDDCA dataset in terms of MRE (2.13 mm) and SD

spectively indicates one-stage methods and coarse-to-fine methods. We propose a coarse-to-fine framework for localizing

independent and correlated anatomical landmarks from 3D

: ' _to- SDR (%) 1.18 mm). In terms of SDR, our method achieves much , .
We h.e t© Propose d pHot gulqed cOdISE t.o fine landmark Dataset | method MRE (SD) I 5 5mm  3mm 4mm  Smm £ h ) ful detecti tes than th d best- medical images. In the fine stage, we employ multiple Unet
localization framework to effectively combine the advantages of 1gher successiul detection rates than the second 6e€s . .
. . _ _ 3D-Unet f 7.69 (5.24) | 203 325 505 16.28 67.90 formi thod SA-LSTM for the tarcet radii of 3 models for landmarks regression for independent landmarks,
heatmap regression and coordinate regression and integrate the SCN 7.44 (4.26) | 265 674 1098 21.36 69.30 periorming metno - or the target radil ol smm, o that each model solelv f toh centeri
i icians’ i 4mm, and 8mm. For the other two target radii, namely 2mm CHSULE that eacll Odel SOICly TOCUSES O 4 palch cenleting
prior knowledge from physicians’ annotation process. ppDCA | PRM { 6.39 (3.37) | 7.27 1272 16.36 29.09 74.54 ; g , AMely the specific sinele landmark of interest. For the correlated
LA-GCN § | 3.23 (2.52) | 35.68 46.76 58.19 69.48 94.74 and 2.5mm, the proposed method’s performance is on par P g o .
SA-LSTM { | 2.37 (1.60) | 56.36 7160 80.00 89.99 95.91 with SA-LSTM. On prostate dataset, our proposed method leingieras, we prejess o el fusion medhlle gind @ ey shice
Proposed f | 2.13 (1.18) | 55.23 70.12 86.20 93.50 99.40 still obtains the best localization performance, in terms of detection module. It successfully 1dentifies the position of the
3D-Unet 3.57 (2.27) | 23.84 36.82 48.23 68.12 96.32 almost all evaluation metrics. This mav be because our key slice from multiple patches and uses the fused features to
SCN f 3.48 (2.31) | 25.68 39.34 51.74 69.57 95.73 | y e . assist in landmark localization
Prostate method has a stronger local feature extraction capability. '
DRM 344 (221) | 26.74 3824 5213 70.54 97.58 : : : Our method outperforms state-of-the-art methods
Proposed 1 | 3.29 (2.26) | 31.17 41.67 54.13 73.22 95.62 shown by Table 2, the implementation of the axial ’

according to extensive experiments on the publicly-accessible
PDDCA dataset and our in-house prostate dataset. We shall
further incorporate more types of medical prior knowledge,

attention module and the slice detection branch aggregate
axis features to further guide the localization of ambiguous
landmarks. These modules enable our model to achieve a

Table 2: Ablation study results for PDDCA dataset by evaluation metrics of MRE(SD).

R i Coi?:nent - Correlated Independent lower MSE (1.82 mm) on correlated landmarks. Sltl}(l:h as Fhe litliapel p(ilor iflthedapatt(})lmlcal re%mn oft Tterest and
diameter : ' : . . . nn 101
PIEON eeriton cleiestiton Chin Oce Mand. Mandr— Odont.p Collectively, our proposed method can effectively use prior OtIeL p I'l.OI'f tow c giu Hized I he manual alnotdatio
y igg Egg;; "2“;’; g’ig% information from physicians’ annotation practice and PTOCESS 1 TUIULE WOTR.
e 1o (L 2.05 (0.53) 2.18 (0.74) 1.68 (1.14 : :
% J 176 (0.66) 2.28 (1.56) (0.53) (0.74) (1.14) constrains the location of correlated landmarks. By
v v v 1.85 (0.62) 1.79 (1.15) leveraging this prior information, our model exhibits

(b) Prostate Landmarks superior performance on multiple datasets.




