

EVALUATING ADVERSARIAL ROBUSTNESS OF LOW DOSE CT RECOVERY KANCHANA VAISHNAVI GANDIKOTA, PARAMANAND CHANDRAMOULI, HANNAH DROEGE, MICHAEL MÖLLER

BACKGROUND

- **Computed Tomography (CT):**
- ✓ Diagnosis of various health conditions
- ✗ Radiation induced health risks.

Low-dose CT : Target is radiated with low-power radiation and/or using fewer projection angles.

X Noisy and severely ill-posed reconstruction.

CT RECONSTRUCTION

Reconstruction of a CT image *u* from a measured sinogram f

$$f = Au + n,$$

- Filtered back projection
- Algebraic reconstruction techniques
- Variational methods

$$\hat{u} = \arg\min_{u} \frac{1}{2} ||Au - f||^2 + R(u)$$

• Neural Networks $\hat{u} = \mathcal{N}_{\theta}(f)$

CODE

https://github.com/KVGandikota/robustnesslow-dose-ct/

REFERENCES

- [1] S. G. Armato III et al. The lung image database consortium (lidc) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. *Medical physics*, 2011.
- [2] D. O. Baguer et al. Computed tomography reconstruction using deep image prior and learned reconstruction methods. *Inverse Problems*, 36(9), 2020.

ADVERSARIAL ROBUSTNESS EVALUATION OF CT RECONSTRUCTION

Robustness to Untargeted Attacks Untargeted attacks find an additive image perturbation that maximizes the reconstruction error subject to L_{∞} constraints on the perturbation.

Universal Attacks we find an adversarial perturbation that maximizes the reconstruction error of a recovery method \mathcal{N}_{θ} for any input subject to L_{∞} norm constrains on the perturbation.

Source Noise Clean FBP FBP-Unet iRadonMap LearnedGD LearnedPD

UNIVERSITY OF SIEGEN

 $\delta_{adv} = \arg \max \|\mathcal{N}_{\theta}(f+\delta) - \mathcal{N}_{\theta}(f)\|_2 \text{ s.t. } \|\delta\|_{\infty} \leq \epsilon.$

Method	û PSNR	$(A\hat{u}, f)$ PSNR	$\hat{u}_{\delta}, \ \epsilon = 0.01$ PSNR	$(A\hat{u}_{\delta}, f)$ PSNR	L_b Empir
FBP	30.37	33.82	25.18	33.36	15.03
TV	31.62	36.52	25.20	35.62	16.52
BP-Unet	35.47	36.47	18.39	35.06	46.71
adonMap	33.94	36.03	17.98	29.62	43.80
earnedPD	35.73	36.46	9.47	25.27	143.39
earnedGD	34.55	36.43	21.14	35.18	30.48

Lipschitz lower-bound $L_b(\mathcal{N}_{\theta}) = \max_i \left(\frac{\|\mathcal{N}_{\theta}(f_i + \delta_i) - \mathcal{N}_{\theta}(f_i)\|}{\|\boldsymbol{\lambda}_{\cdot}\|} \right)$

Classical approaches FBP & TV are slightly more robust than neural networks. • TV is better than FBP in terms of SSIM and Bregman distance.

• Consistency with the original sinogram is less affected than accuracy.

Universal Attacks & Transferability

$$\delta_{uniadv} = \arg \max_{\delta} \sum_{\text{examples i}} \|\mathcal{N}_{\theta}(f_i + \delta) - \mathcal{N}_{\theta}(f_i)\|_2 \text{ s.t. } \|\delta\|_{\infty} \leq 1$$

• Universal attacks are both feasible and transferable (ϵ =0.05 in below)

			-	
FBP	FBP-Unet	iRadonMap	LearnedGD	LearnedPD
30.53/0.714	35.67/0.824	34.19/0.799	34.74/ 0.802	35.92/0.829
10.34/0.036	9.90/0.031	8.74/0.025	7.68/0.021	10.62/0.041
14.42/0.098	4.95/0.022	9.06/0.035	9.26/0.095	7.77/0.042
13.02/0.0706	9.61/0.049	3.82/0.0108	7.38/0.042	10.99/0.057
15.60/0.188	13.52/0.220	10.38/0.112	4.32/0.183	9.69/0.109
23.07/0.358	21.42/0.444	19.45/0.232	23.54/0.453	-2.95/0.003

Robustness to Localized Attacks Localized attacks find an additive perturbation that produces a change in the visual appearance within a localized clinically relevant region g_c of the reconstruction using an *adversarially trained* classifier \mathcal{G}_{ϕ} .

 $\delta_{adv} = \arg\max E(\mathcal{G}_{\phi}\left(g_{c}\left(\mathcal{N}_{\theta}(f+\delta)\right)\right), y) \text{ s.t. } \|\delta\|_{\infty} \leq \epsilon.$

- Change in malignancy prediction of robust classifier \mathcal{G}_{ϕ} requires visible change in reconstruction within g_c .
- tion, and avoid boundary artifacts.

	Clean			$\epsilon = 0.01$			
Method	û PSNR	$ \begin{array}{ccc} \hat{u} & \hat{u}_i \hat{u}_e \\ PSNR & PSNR \end{array} $		 \hat{u}_{δ} PSNR	$\hat{u}_{\delta_i} \hat{u}_{\delta_e}$ PSNR		$(A\hat{u}_{\delta}, f)$ PSNR
FBP	30.86	31.45 30.86	33.81	30.60	22.29	30.83	33.79
TV	32.36	31.84 32.37	36.52	32.00	22.70	32.32	36.48
FBP-Unet	36.94	35.67 36.95	36.50	34.85	19.43	36.61	36.46
iRadonMap	35.25	34.07 35.27	36.09	33.70	18.85	35.12	36.03
LearnedPD	37.22	35.97 37.23	36.49	33.15	18.34	35.08	36.28
LearnedGD	35.80	34.86 35.82	36.49	34.86	22.02	35.71	36.46

- Local attacks preserve consistency with the original sinogram.
- Changes visual appearance in the local region without affecting exterior region .
- Attack also changes predicted malignancy of robust classifier \mathcal{G}_{ϕ} .
- Both classical approaches & neural networks are susceptible to localized attacks.

t.

• Apply a smoothed Gaussian mask to the adversarial noise to localize degrada-