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Objective
We aim to develop a robust machine learning model for histopathology data analysis that can overcome
batch effects and ensure consistent performance across different healthcare institutions.

Background
Batch effects induce systematic differences in histopathology images, arising from varying slide
preparation methods, staining protocols, and data processing techniques. These can be
institution-specific or even be found within the same institution. While human pathologists are capable
of disregarding these differences, they significantly impact machine learning models. This leads to a
degradation of model performance when deployed in different hospitals. Our approach addresses these
issues by integrating an optimal transport (OT) based loss function during model training[1].

Optimal Transport
OT is a mathematical framework for comparing, aligning, and transforming probability distributions. It
defines a distance between distributions that captures the ’cost’ of transforming one distribution into
another. Given two discrete distributions P = {(xi , pi)} and Q = {(yj , qj)}, the OT problem can be
defined as:

W (P ,Q) = min
Γ∈Π(p,q)

∑
i ,j

Γijc(xi , yj) (1)

where c(xi , yj) is a cost function that quantifies the ’distance’ between points xi and yj , and Π(p, q) is
the set of all joint distributions Γ whose marginals are respectively P and Q.

Dataset
We utilized the Camelyon17-WILDS benchmark dataset[2], specifically designed to tackle distribution
shift in machine learning applications. This dataset, derived from Camelyon-17, contains Hematoxylin
and Eosin (H&E) stained images of breast lymph node resections from five institutions. The dataset
comprises 96x96 pixel patches from a whole-slide image of a lymph node, each annotated by experts as
tumor or non-tumor.

OT-regularized Approach
We propose an ”OT-regularized” approach where we integrate OT loss during model training to
discover more robust, domain invariant features. The total objective function is defined as:

Ltotal = LCE + α ∗ LOT, (2)

where α is a hyperparameter controlling the strength of cross-domain regularization. The cross-entropy
loss LCE is defined inline as LCE = −

∑
(log(C (ϕ(XS ; θϕ); θC )), where XS is a batch of samples from

the source domain, and θϕ and θC are the weights of the featurizer ϕ and classifier C , respectively.
The domain generalization LOT is defined inline as LOT =

∑
(OT(ϕ(XS , θS), ϕ(XT , θS))), where XT

is a batch of samples from the target domain (validation). Training on two sets of institutions – the
labeled institutions 1-3, and the unlabeled institution 4 – enables this robust feature identification. The
model is then evaluated at test time using these domain-independent features.

Choosing optimum value of α
We trained a ResNet50[3] model for this image classification task. We calculated the Optimal
Transport (OT) distance between the final-layer features of training and validation batches during
training. The total loss was a sum of cross-entropy and OT loss, regulated by tuning parameter α. The
optimal α = 0.1 was selected for highest validation dataset accuracy.

α 0.00001 0.0001 0.001 0.01 0.1 1
Accuracy of
validation

0.882
(0.011)

0.882
(0.002)

0.871
(0.004)

0.882
(0.007)

0.891
(0.005)

0.712
(0.165)

Accuracy of
test

0.799
(0.029)

0.857
(0.011)

0.811
(0.019)

0.826
(0.012)

0.850
(0.019)

0.733
(0.150)

Comparing with DANN Method
Our approach was compared with the established Domain Adaptive Neural Network (DANN)
method[4], a popular approach for domain adaptation. Our goal was to demonstrate that replacing
DANN’s adversarial objective with an OT loss could lead to a more nuanced correction. For fairness,
we trained a DANN model using the same architecture and data splits as our method. The results
showed our method surpassed DANN in performance on both validation and test datasets, notably with
a wider margin on the latter.

OT-regularized DANN
Accuracy of
validation

0.891
(0.005)

0.873
(0.014)

Accuracy of
test

0.850
(0.019)

0.796
(0.052)

Exploring Feature Space
Our exploration of the feature space, conducted through a qualitative evaluation using features
extracted by a pre-trained ResNet-50 and t-SNE projection, revealed distinct clustering patterns. In the
training dataset, tumor and normal tiles formed distinct clusters, while in the test dataset, they formed
a continuous single cluster. We noted that a significant portion of the test tiles contained image
features that were underrepresented in the training/validation set. Further visualization showcased
notable differences in the pathology tiles across all datasets, including variations in color, staining, and
biological features. Despite these variations, our OT method consistently outperformed DANN, even in
the poorly represented feature spaces during model training, indicating its potential for capturing the
full distribution of image variability on the feature representation level.

Synergistic Opportunities
performance on the WILDS-Camelyon17 dataset. These include the Empirical Risk Minimization
(ERM), CORAL, IRM for domain generalization, and Group DRO for subpopulation shifts. While these
methods exhibit variable efficacy, none surpassed the ERM baseline in test performance, highlighting
the challenge of domain adaptation on histopathology images. Contrarily, our method significantly
outperformed the ERM baseline. Advanced approaches for batch effect correction, such as synthetic
images (MBDG) and vision transformers (SGD Freeze Embed) occasionally outperform our OT
method. However, we recognize potential synergies between these methods.

Methods ERM CAROL IRM Group DRO MBDG SGD (Freeze-Embed) OT-regularized
Accuracy of
validation

0.849
(0.031)

0.862
(0.014)

0.862
(0.014)

0.855
(0.022)

0.881
(0.018)

0.952
(0.003)

0.891
(0.005)

Accuracy of
test

0.703
(0.064)

0.595
(0.077)

0.642
(0.081)

0.684
(0.073)

0.933
(0.010)

0.965
(0.004)

0.850
(0.019)

Effects of Stain Augmentation
We evaluated the influence of stain augmentation on model generalization in this dataset. Our analysis
involved a comparison between the OT-regulated method, ERM with data augmentation (by WILDS),
and the H&E-tailored RandAugment approach. The H&E-tailored RandAugment method showed
superior performance over the OT-regulated approach on the Camelyon17-WILDS dataset. It is
noteworthy that while stain augmentation was effective in this dataset, it might not be as successful in
others due to inherent morphological differences that could arise from batch effects.

Methods
ERM

w/ data aug
H&E-tailored RandAugment OT-regularized

H&E-tailored RandAugment
w/ OT-regularized

Accuracy of
validation

0.906
(0.012)

0.914
(0.006)

0.891
(0.005)

0.912
(0.005)

Accuracy of
test

0.820
(0.074)

0.922
(0.022)

0.850
(0.019)

0.924
(0.006)

Analysis of Convergence
This section evaluates the training process with varied values of α. The leftmost plots display the
Cross-Entropy (CE) loss, the middle plots show the Optimal Transport (OT) loss, and the rightmost
plots indicate model performance on the validation set throughout training. Each row represents a
different value of α, showcasing the impacts of tuning on model convergence.

Conclusion
Our study demonstrates the effective use of optimal transport (OT) in mitigating domain
differences during model training, enhancing overall adaptability.

The OT approach can accurately classify test image tiles even in regions with scarce training
examples.

Our OT loss demonstrates robustness against shifts in image feature space between training and
test sets.

While the OT loss doesn’t outperform all current batch correction methods, it opens avenues for
synergy, potentially enhancing methods like stain augmentation and advanced architecture designs.

Future work should explore the performance of our method in wider fields-of-view, more
challenging tasks, and in additional unseen domains.
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