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INTRODUCTION Contributions EXPERIMENTS Experimental Setup

Motivation [ Extend ProtoPNet to 3D mpMRIs Evaluation Metrics [0 5-fold cross-validation

[0 3D ResNet as the backbone [ Training stages
[0 Training of layers before the classification layer

[0 CNNs often take undesired shortcuts O Online data augmentation during training O Classification: balanced accuracy (BAC)

[0 New attention module
[0 Soft masking: sharpen attention maps

O Interpretability: incremental deletion score (IDS) O Prototvoe renssionment
[0 Correctness of reflecting the decision-making process yP 5

. . . [0 Training of the classification layer
O Online-CAM loss: assist localization [ The normalized area under the incremental deletion curve O Models compared

L Case-based models identify prototypes [ Statistically significant improvements in = Interpre‘.cabll_lty: activation precision (.AP) O CNN (with GradCAM): feature layer + add-on module +
Related Work interpretability metrics O Localization coherence with the fine-annotated label alobal average pooling + classification layer

. _ x)nT(UpSample(m(x)
O ProtoPNet: pioneering case-based model O Correctness and localization coherence AP = oo (UpSample(i)) O ProtoPNet: without the mapping module and its losses

_ .o : : _ _ _ _ T(UpSample(m(x) _ _ _
O IAIA-BL: require fine-grained annotations 0 Without fine-grained annotations H(): fine-annotated label ‘M((;D _ actisatgonxrﬂ T("): threshold function O XProtoNet: without soft masking and the online-CAM loss
O XProtoNet: no evaluation of interpretability | ’ | P, L

[0 Medical settings emphasize interpretability
[ Post-hoc explainers are unreliable
[0 Concept-based models need predefinitions

DATASET Data Augmentation RESULTS
Condition [Classification Interpretability
BraT$S 2020 p ' p Summary Model AM ‘ SM ‘ 0OC BAC IDS AP
[0 369 subjects: 293 with HGG, 76 with LGG ,, A1 &) [ Classification performance: BAC CNN (with GradCAM) | | 0.865+0.026 10.112+0.04910.099+0.030
[0 Four modalities: T1, T1CE, T2, FLAIR - e B ) [ No statistically significant differences ProtoPNet 0.868+0.032 10.609+0.164|0.007+0.001
O Tumor sub-regions labeled wAFAR A« AN TS AN among all models XProtoNet vV 0.870+0.021(0.170+0.041{0.203+0.030
[J Unify as the whole tumor for evaluation SOl T _ ’ [ Interpretability performance: IDS & AP MProtoNet A NV 0.868+0.050 10.150+0.08810.568+0.125
[0 MProtoNet C achieves the best (p=0.929) (p=0.647) (p=0.004)
METHODS performance in the interpretability MProtoNet B v VvV | 0.865+0.015 [0.103+0.02010.204+0.028
Input Feature Localization Prototype Classification metrics of IDS & AP (p=0.360) (p=0.069) (p=0.963)
)\ Y k ’ )\ | O Soft masking and the online-CAM loss MProtoNet C v v v ]0.858+0.048 |0.079+0.034/0.713+0.058
(p=0.516) (p=0.031) (p<0.001)
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I Visualization Examples of the
- Localization Coherence Results
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Demonstration of the Case-Based Reasoning
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