MProtoNet: A Case-Based Interpretable Model for Brain Tumor Classification with 3D Multi-parametric Magnetic Resonance Imaging

Yuanyuan Wei^{1,2}, Roger Tam^{2*}, Xiaoying Tang^{1*}

¹ Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China ² School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada

INTRODUCTION

Motivation

- ☐ CNNs often take undesired shortcuts
- Medical settings emphasize interpretability
- ☐ Post-hoc explainers are unreliable
- ☐ Concept-based models need predefinitions
- ☐ Case-based models identify prototypes

Related Work

- □ ProtoPNet: pioneering case-based model□ IAIA-BL: require fine-grained annotations
- XProtoNet: no evaluation of interpretability

Contributions

- Extend ProtoPNet to 3D mpMRIs
 - ☐ 3D ResNet as the backbone
- Online data augmentation during training
- New attention module
 - ☐ Soft masking: sharpen attention maps
 - ☐ Online-CAM loss: assist localization
- ☐ Statistically significant improvements in interpretability metrics
 - ☐ Correctness and localization coherence
- Without fine-grained annotations

EXPERIMENTS

Evaluation Metrics

- ☐ Classification: balanced accuracy (BAC)
- ☐ Interpretability: incremental deletion score (IDS)
 - ☐ Correctness of reflecting the decision-making process
- ☐ The normalized area under the incremental deletion curve☐ Interpretability: activation precision (AP)
 - □ Localization coherence with the fine-annotated label

 $AP = \frac{|H(\mathbf{x}) \cap T(\text{UpSample}(M(\mathbf{x})))|}{|T(\text{UpSample}(M(\mathbf{x})))|}$

 $H(\cdot)$: fine-annotated label, $M(\cdot)$: activation map, $T(\cdot)$: threshold function

Experimental Setup

- 5-fold cross-validation
- ☐ Training stages
- ☐ Training of layers before the classification layer
- ☐ Prototype reassignment
- ☐ Training of the classification layer
- Models compared
 - □ CNN (with GradCAM): feature layer + add-on module + global average pooling + classification layer
 - ☐ ProtoPNet: without the mapping module and its losses
- ☐ XProtoNet: without soft masking and the online-CAM loss

DATASET

BraTS 2020

- □ 369 subjects: 293 with HGG, 76 with LGG
- ☐ Four modalities: T1, T1CE, T2, FLAIR
- ☐ Tumor sub-regions labeled

☐ Online-CAM loss

☐ Learn more accurate attention maps

☐ Reduce irrelevant background areas

 $M_k(\mathbf{x}) = \frac{1}{1 + \exp(-\omega(M_k^0(\mathbf{x}) - \sigma))}$

☐ Prototype layer

Soft Masking

Classification layer

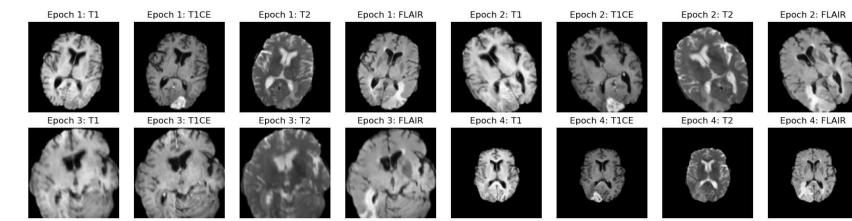
Unify as the whole tumor for evaluation

Data Augmentation

Online-CAM Loss

 $LSE(I_e(\mathbf{x})) =$

☐ Directly utilize image-level labels


☐ Use LSE pooling to obtain class predictions

 $\frac{1}{r}\log\left[\frac{1}{16\times16\times12}\sum_{h,w,d}\exp(r\cdot I_{e,h,w,d}(\mathbf{x}))\right], e\in\{1\dots E\}$

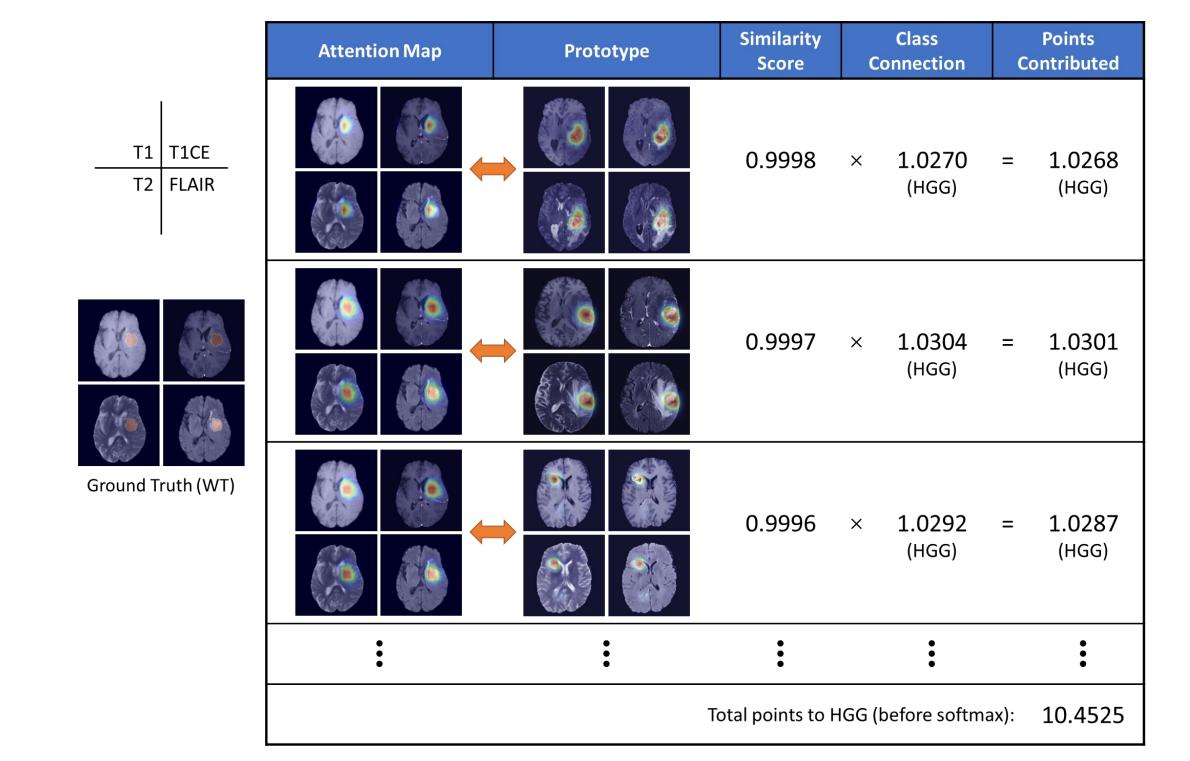
 $p_{\text{OC}}(\mathbf{x}_i) = \text{Softmax}\left(\text{LSE}(\mathbf{I}(\mathbf{x}_i))W_{\text{Conv}_{\text{map}}}W_{\text{cls}}\right)$

directly from intermediate features

☐ Online data augmentation follows nnU-Net

RESULTS Summary

- ☐ Classification performance: BAC
- No statistically significant differences among all models
- ☐ Interpretability performance: IDS & AP
- MProtoNet C achieves the best performance in the interpretability metrics of IDS & AP
- ☐ Soft masking and the online-CAM loss are both important for statistically significant improvements over XProtoNet


Model	Condition			Classification	Interpretability		
Model	AM	SM	OC	BAC	IDS	AP	
CNN (with GradCAM)				0.865±0.026	0.112±0.049	0.099±0.030	
ProtoPNet				0.868±0.032	0.609±0.164	0.007±0.001	
XProtoNet				0.870±0.021	0.170±0.041	0.203±0.030	
MProtoNet A				0.868±0.050	0.150±0.088	0.568±0.125	
	_		_	(p=0.929)	(p=0.647)	(p=0.004)	
MProtoNet B			$\sqrt{}$	0.865±0.015	0.103±0.020	0.204±0.028	
	_	_	_	(p=0.360)	(p=0.069)	(p=0.963)	
MProtoNet C		$\sqrt{}$	$\sqrt{}$	0.858±0.048	0.079±0.034	0.713±0.058	
				(p=0.516)	(p=0.031)	(p < 0.001)	
AM: attention man SM: soft masking OC: online-CAM							

AM: attention map, SM: soft masking, OC: online-CAM

METHODS	Feature	Localization	Prototype	Classification	
FLAIR T2 T1 T1 T1 X Architecture Feature layer	CNN	Add-on Ad	$H_1(\mathbf{x})$ \mathbf{p}_1 0.65 $H_2(\mathbf{x})$ \mathbf{p}_2 0.16 $H_K(\mathbf{x})$ \mathbf{p}_K 0.38	0.932 0.068 HGG LGG	
 3D ResNet-152 Localization layer Add-on module Mapping module 	Online-CAM (Training Only)	Shared LSE Pooling Wo	Shared 0.685 0.315 W_{cls} HGG LGG	<u>;</u>	
☐ Soft masking	- -				

Visualization Examples of the Localization Coherence Results

Demonstration of the Case-Based Reasoning

Ground Truth (WT)	CNN (with GradCAM)	ProtoPNet	XProtoNet	MProtoNet A	MProtoNet B	MProtoNet C

	Q		0		Q	

REFERENCES

[1] C. Chen et al., "This looks like that: deep learning for interpretable image recognition," NeurIPS 2019.
[2] A. J. Barnett et al., "A case-based interpretable deep learning model for classification of mass lesions in digital mammography," Nature Machine Intelligence, Dec. 2021.
[3] E. Kim et al., "XProtoNet: diagnosis in chest radiography with global and local explanations," CVPR 2021.

* Corresponding authors: Dr. Xiaoying Tang (email: tangxy@sustech.edu.cn); Dr. Roger Tam (email: roger.tam@ubc.ca)