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Introduction and our proposal

* One-shot federated learning
» Allowing single-round communication

First stage: local training
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Our proposed method comprises three stages

Second stage: data synthesizing

Third stage: knowledge distillation
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Experiments and results

sampling global model

Figure 1: Overview of our framework, which contains three stages. In our study, bone ages range from 1 to 228 months. Let x denote images, and y denote
the corresponding ages, we assume ages y follow a discrete uniform distribution p(y) over the set of {1, 2, 3, ..

, 228}

Dataset and metric
 RNSA-BAA, hand radiograph

« 12,661/ 1,425/ 200 for training /
validation / testing

= Experimental setup

One central server and four local clients

* |ID and non-IID simulation (see Figure 2)
 Model homogeneity (same local models) and

Table 1: Quantitative comparison among different methods under four different settings.
Centralization represents the upper-bound accuracy derived from centralized training.
Results are reported as average (standard deviation) on test set based on three runs.

centralization 10.15 (0.46)

« Mean absolute difference (MAD) model heterogeneity (different local models) homo-IID homo-non-IID hetero-IID hetero-non-IID
#D 4ttt 4D * P Formating four different settings  FedAvg 11.68(0.48)  36.80(1.23)
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Figure 2: Details of experimental setup: (a) Training set was divided into four
subsets with bone age values falling within four ranges. (b) Simulated independent
and identically distributed (1ID) setting. (c) Simulated non-IID setting. Size of each
red circle is proportional to number of samples.

weights after local training)

FLNoisyKD (using random noise images)

FedOneShot (using a proxy dataset)

shot FL in regression, and we show the efficacy

of our method in this setting.
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