
Top-1 accuracy:
CLIP - 10.51%  

CLOOB - 11.36%
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Introduction
In ophthalmology, large multi-modal
datasets are conveniently accessible
as retinal imaging scanners acquire
2D fundus images and 3D optical
coherence tomography (OCT) for
disease evaluation.

Objective
Motivated by this, we propose a
multimodal CLIP [1] / CLOOB [2]
objective-based model to learn joint
representations of the two retinal
imaging modalities, which can then be
used for diverse downstream tasks.

Methodology
The study uses large-scale data from OPTIMA Lab imaging datasets for pre-
training the encoders. We use the HARBOR trial [3] as an external dataset for
the downstream tasks. Our framework uses ResNet18 and VideoResNet18 with
pre-trained ImageNet and Kinetics weights as backbone encoders and employs
InfoNCE and InfoLOOB objectives for contrastive pre-training. 

For downstream tasks, the volume encoder is used to extract the latent
representations, while an additional single fully-connected layer on top is
trained to perform the prediction tasks.

Downstream tasks
We define three downstream tasks on the
external dataset, namely predicting:  
    1. central subfield thickness (CST) 
    2. best-corrected visual acuity (BCVA)
    3. high treatment need (TN).
The first is treated as a regression task, while the
latter two as binary classification tasks.

To demonstrate the models' feature extractor
capabilities, first, we perform linear probing;
hence, the encoder weights are kept frozen, and
only the prediction layer is trained. Then the
models are fine-tuned on the same tasks. We use
5-fold cross-validation to evaluate the models
and report the mean scores over the folds. 

The obtained mean performance scores on the downstream tasks using
the baseline and CLIP/CLOOB pre-trained encoders, respectively. 
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Conclusion Our initial findings suggest that contrastive pre-training with multi-modal retinal
images yields transferable and meaningful OCT volume representations, which can
be leveraged for other clinical tasks. 


