
Motivation

• Goal: reliable score of uncertainty as quality control for automated
Proximal Femur Fracture classification

• CADs: achieving state-of-the–art results in diagnosis (1,2), improve
accuracy of diagnosis (3), reduction of medical error and support
time, cost.efficient treatment in future medicine (6)

• Proximal femur fractures: high incidence, early diagnosis and
treatment are essential for the patient’s outcome and survival (4),
depends on the examiners’ experience (5).

• Ground truth: three different experts, confirmed by senior radiologist

• Monte Carlo dropout, as an approximation of Bayesian Neural
Networks (7) providing a quality control measure.

• ResNet adopted from (8), where the MCDO was introduced only at
the last dense layer, treating the rest as a deterministic network.

• Stochastic DenseNet121 model, the dropout layers were introduced
at each convolutional layer and in the transition blocks, hyper-
parameters adopted from (9). 5-fold cross validation were conducted
for the DenseNet models.

Experiments &  Results
• Clinical experts vs. CAD system for the 3 classification scenarios

• Uncertainty coherence with miss-classication for DenseNetCE+

• Uncertainty scores on test and validation set

• Qualitative assessment - re-evaluation 30% of the test dataset by 
an independent radiologist & In-depth analysis - further annotations 
from three independent experts, each with two independent reads in 
different occasions as different shifts and lighting conditions

• Two key outcomes:

Conclusion

• Coherency between misclassification and uncertainty scores - high
uncertainty score means high risk for error in prediction.

• Uncertainty measures mimicking the actual radiologist’s uncertainty
for challenging and complex examples reflected on intra- and inter-
experts variability.

• Possible key element for clinical applicability of CADs

Future work

• Improving robustness of the model
• Extending the work on different datasets/ other parts of the human

body
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Database

• 672 patients from trauma surgery 
department of Klinikum Rechts der 
Isar, Munich, 1347 X-ray images & 
corresponding labels – using the 
work of (8) as baseline 

Method

• Three different classification 
scenarios:

-C ∈ {C1, C2, C3}; C1 ⊂
{Fracture, Normal} = fracture 
detection scenario 
-C2 ⊂ {A, B, Normal} = 3 classes 

scenario 
-C3 ⊂ {A1, A2, A3, B1, B2, B3} = 

6 classes scenario

Low uncertainty-
missclassfied à false
ground truth

High uncertainty-
missclassfied à high 
uncertainty among
experts

High uncertainty-
correctly classified
à false ground truth

1. Uncertainty score = reliable measure for detecting mistakes in
the model performance and a valid robustness quality control.

2. Model’s performance is reflected on how well and coherent is
the modelling of uncertainty, i.e. ResNet+ vs. DesneNet+ 1


