Caption generation from histopathology whole-
slide images using pre-trained transformers
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Overview

e Typically in machine learning workflows for digital histopathology we use expensive supervised signals

o« We orchestrate a set of weakly-supervised transformer-based models with a first aim to address both whole-slide image classification and captioning.

e Our proposed pipeline shows competitive results and emphasizes the need for pre-trained foundation models in digital histopathology:.

Method

CLIP A multi-modal model to learn represen- Solution: We address the automatic generation of the conclusion of pathology reports in the form
tations between images and text. CLIP of image captions. Our pathology reports come from two labs and are written originally in two
uses a contrastive loss. Both the text and languages: Dutch and Italian.
the image representations should be one
vector. [1].

We use an NMT model to translate the captions. To further get rid of extraneous information
and to normalize the format of the reports we prompt GPT-3.5-turbo.
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generated captions. Proposed Pipeline:
Our captioning model has a diagnostic ac- 1. Extract embeddings with pre-trained models to represent WSIs and text.

curacy close to a supervised classifier while

having the weakly- supervised advantage. 2. Irain CLIP using these embeddings.

3. Train an additional decoder layer on top of a pre-trained Bio-GPT model conditioned on

Despite using large transformer models, the CLIP-trained W51 embeddings.
we fine-tuned our pipeline on a single GPU in
20 minutes. Our work highlights the need for
large scale pre-trained models in the field of
digital pathology.
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