

ζ -mixup: Richer, More Realistic Mixing of Multiple Images Kumar Abhishek[†], Colin J. Brown[‡], Ghassan Hamarneh[†]

mixup Data Augmentation

Generate synthetic samples using convex combinations of training samples and linear interpolations of labels.

 $\hat{x} = \lambda x_1 + (1 - \lambda) x_2 \qquad \hat{y} = \lambda y_1 + (1 - \lambda) y_2$

Assumption: a model should <u>behave linearly between any two</u> training samples, even if the distance between them is large.

Problems:

- Can sample data off the data manifold.
- Can generate samples with incorrect labels.

Proposed Data Augmentation: ζ -mixup

Arguments:

- Synthesized samples should have high confidence of realism.
- A model should only behave linearly nearby training samples.

Formulation

Synthesize a new sample as **convex combinations of** *N* **samples**

$$\hat{x} = \sum_{i=1}^{N} w_i x_i; \ \hat{y} = \sum_{i=1}^{N} w_i y_i$$

Sample weights from terms of a *p*-series, apply them to a randomized ordering s of training samples, and normalize the weights.

$$w_i = \frac{s_i^{-\gamma}}{C}, \quad i \in [1, N]$$

 $j^{-\gamma}$ is the N-truncated Riemann zeta function at γ , $\zeta(\gamma)$. C = $\gamma = 1$

 γ : hyperparameter to control how far from the original samples the synthetic samples are created.

Key properties:

- Can synthesize **N! new samples** for a single value of γ .
- For $\gamma \ge 1.72865$, the weight assigned to one sample dominates all other weights.
- *mixup* is a special case of ζ-*mixup*.

[†] Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada [‡] Hinge Health, Canada

Natural image classification (classification error rate)

Method	CIFAR-10 ResNet-18	CIFAR-100 ResNet-18	Method	CIFAR-10 ResNet-18 ResNet-50		CIFAR-100 ResNet-18 ResNet-50	
$\begin{array}{c} \text{ERM} \\ mixup \\ \zeta-mixup \end{array}$	$5.48 \\ 4.68 \\ 4.42$	23.33 21.85 21.35	$\begin{array}{c} \text{CutMix} \\ + \zeta \text{-}mixup \end{array}$	4.13 3.84	4.08 3.61	19.97 1 9.54	18.99 18.86

Medical image classification (micro-averaged F1 score)

Method	ISIC 2016		ISIC 2017		ISIC 2018		DermoFit	
	$\operatorname{ResNet-18}$	ResNet-50	ResNet-18	$\operatorname{ResNet-50}$	ResNet-18	$\operatorname{ResNet-50}$	ResNet-18	$\operatorname{ResNet-50}$
ERM	0.7836	0.8127	0.7383	0.6867	0.8756	0.8653	0.8269	0.8500
mixup	0.7968	0.8179	0.7333	0.7433	0.8394	0.8601	0.8577	0.8500
ζ -mixup	0.8654	0.8602	0.7633	0.7733	0.8756	0.9016	0.8731	0.8962

ζ-mixup improves classification performance on natural and medical images (skin lesion; measured by F1-micro) datasets, and can be combined with other augmentation methods (e.g., CutMix).

Acknowledgements

NSERC

CRSNG

Digital Research Alliance of Canada Alliance de recherche 📀 numérique du Canada

SIMON FRASER UNIVERSITY SFU

Contact: kabhishe@sfu.ca