C-mixup: Richer, More Realistic Mixing of Multiple Images or
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mixup Data Augmentation

Generate synthetic samples using convex combinations of
training samples and linear interpolations of labels.
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Assumption: a model should behave linearly between any two
training samples, even if the distance between them is large.

Problems:
e Can sample data off the data manifold.

e Can generate samples with incorrect labels.

Proposed Data Augmentation: -mixup

Arguments:
e Synthesized samples should have high confidence of realism.

e A model should only behave linearly nearby training samples.

Formulation
Synthesize a new sample as convex combinations of N samples
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Sample weights from terms of a p-series, apply them to a
randomized ordering s of training samples, and normalize the
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V. hyperparameter to control how far from the original samples
the synthetic samples are created.

Key properties:
e Can synthesize N! new samples for a single value of y.

e Fory=>1.72865, the weight assigned to one sample dominates
all other weights.
e mixup is a special case of (-mixup.

Results
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mixup can only mix 2 {-mixup can mix N
samples. samples (e.g., 4, 8)
and respects the data
manifold.
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{-mixup better preserves the intrinsic dimensionality of
datasets (estimated using 128 nearest neighbors).
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mixup outputs have ghostlng
artifacts and lower realism.
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mixup outputs can contaln
incorrect soft labels.
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mixup outputs have a
much higher realism.
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{-mixup outputs contain correct
and rich soft labels, incorporating
information from multiple classes.

{-mixup outputs exhibit label richness, realism, and
label correctness.
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¢-mixup yields realism and diversity in the synthesized samples.
Natural image classification (classification error rate)
Method CIFAR-10 CIFAR-100 Method CIFAR-10 CIFAR-100
ResNet-18  ResNet-18 ResNet-18 ResNet-50 . ResNet-18 ResNet-50
ERM 5.48 23.95 CutMix 4.13 4.08 - 19.97 18.99
MiTUp 4.68 21.85 + (-mizup 3.84 3.61 | 19.54 18.86
C-mizup 4.42 21.35 .

Medical image classification (micro-averaged F1 score)

Method ISIC 2016 I[SIC 2017 ISIC 2018 DermoFit
S ResNet-18 ResNet-50 , ResNet-18 ResNet-50 , ResNet-18 ResNet-50 , ResNet-18 ResNet-50
ERM 0.7836 0.8127 : 0.7383 0.6867 : 0.8756 0.8653 : 0.8269 0.8500
mixup 0.7968 0.8179 : 0.7333 0.7433 : 0.8394 0.8601 : 0.8577 0.8500
| | |

C-mizup 0.8654 0.8602 0.7633 0.7733 0.8756 0.9016

0.8731 0.8962

{-mixup improves classification performance on natural and medical images (skin
lesion; measured by F1-micro) datasets, and can be combined with other augmentation

methods (e.g., CutMix).
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