Deep Learning Regression of Cardiac Phase on Real-Time MRI

Samira Masoudi^{1,2}, Amin Mahmoodi^{3,4}, Hafsa Babar², Albert Hsiao^{1,2}

¹Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
²Department of Radiology, University of California San Diego, San Diego, CA, USA
³Department of Bioengineering, University of California San Diego, San Diego, CA, USA
⁴Medical Scientist Training Program, University of California San Diego, San Diego, CA, USA

AiDA lab

Financial Disclosures

- Albert Hsiao has financial Interest/affiliation with the listed organizations:
 - Ownership/Founder, Major stock Share holder/Equity Intellectual Property Rights at Arterys, Inc (acquired by Tempus)
 - Research Grant Support from GE HealthCare, Bayer AG
- Other authors of this work do not have any relevant financial relationships with any ineligible companies to disclose.

Motivation

- Cine steady-state freeprecession (SSFP) is the backbone of cardiovascular MRI and used for quantitative assessment of left ventricular structure and function.
- Cine SSFP requires electrocardiogram (ECG) recorded over multiple heartbeats with breath-holds.

Figure from: [1] Muthurangu, Vivek, and Steven Dymarkowski. "Cardiac MRI physics." Clinical Cardiac MRI (2012): 1-30.

• **ECG-gating** is used to concatenate images over multiple RR-intervals which obscures quantification of beat-to-beat variations and is vulnerable to artifacts.

Real-time (RT) SSFP, performed without ECG-gating or breath-holding, has the potential **to address** Cine SSFP **limitations** in arrhythmia.

RT SSFP for quantitative analysis of cardiac function is **not clinically-feasible**.

<u>Cardiac phases must be identified</u> from the RT SSFP images at the first place.

Applying <u>analytical models</u> developed for the standard Cine SSFP is <u>not</u> <u>possible</u> otherwise as they perform on individual R-R intervals depending on labeled cardiac phases.

Labor-intensive and time consuming

Cine SSFP RT SSFP

Figure from: [2] Laubrock, Kerstin, et al. "Imaging of arrhythmia: Real-time cardiac magnetic resonance imaging in atrial fibrillation." European Journal of Radiology Open 9 (2022): 100404.

Proposed Solution

We propose a **semi-supervised deep learning (DL)** strategy to automatically identify **end-diastolic (ED)** and **end-systolic (ES)** cardiac phases from each slice of RT SSFP image series across the entire LV volume

241 patients with short-axis cine SSFP

- 20 cardiac phases in each cine series
- Temporal Steps: 37 ± 12.5 ms
- Labeled cardiac phases

max pooling

channel concatenation

channel-wise normalization

fully-connected layer

softmax

Xception Model Pretrained on ImageNet

22.9M parameters to train

[4] Chollet, François. "Xception: Deep learning with depthwise separable convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

Figure modified from: [5] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Training Parameters

PREPROCESSING	View Standardization Histogram Matching [0,1] Normalization				
AUGMENTATION	Changing Starting point Negative Cropping (zoom out) Temporal Step (120 – 240 ms)	Data	Train (80%)	Validation (10%)	Test (10%)
LOSS FUNCTION	Mean Absolute Error()	Short-Axis Cine SSFP			
		Patients $(n = 241)$	193	24	24
		Cardiac Phases $(n = 4,820)$	3,860	480	480
BATCH SIZE	48	Spatiotemporally Downsampled Short-Axis Cine SSFP			
		Cardiac Phases $(n = 482,000)$	386,000	48,000	48,000
EPOCHS	120				

Cardiac Phase (Frame) Distance of 0 (Delay = 0 ms)

	ED	ES
Accuracy	0.905	0.877
Recall	0.8238	0.739

Cardiac Phase (Frame) Distance of 1 (Delay = 120 – 240 ms)

	ED	ES
Accuracy	0.96	0.957
Recall	1.00	0.984

Conclusions

- Deep-learning enables automatic cardiac phase estimation of End Diastole (ED) and End Systole (ES) from downsampled cine steady-state freeprecession (SSFP) MRI within 0-1 frame distance
- This model is a translatable toward ED and ES identification from Real-time SSFP

Thank You for Listening

Samira Masoudi, PhD smasoudi@ucsd.edu

Hafsa S. Babar, MD hbabar@health.ucsd.edu

Albert Hsiao, MD, PhD alhsiao@health.ucsd.edu

Amin Mahmoodi amahmoodi@health.ucsd.edu