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• The Complex rRAKI approach shows improved performance w.r.t. the 

SSIM metric and comparable performance w.r.t. other metrics with rRAKI 

using 50% fewer parameters on brain and knee datasets

• The performance improvement of Complex rRAKI is attributed to the 

structure of its network which respects the complex-valued algebraic 

structure of the input, thus constraining the degrees of freedom in the 

neural network and assisting improved learning.

• The proposed PlaneReLU activation function shows promising potential 

for use in complex-valued neural networks in k-space and other complex-

valued domains

• Two datasets are used –
1. fastMRI multicoil brain dataset (FLAIR contrast)

2. fastMRI multicoil knee dataset (proton density contrast with fat suppression)

• Cartesian undersampling with acceleration factor 5

• Optimizer: SGD with lr = 0.001 and momentum = 0.9

• Loss:

• Parallel MRI is a method to speed up otherwise slow MRI scans using 

multiple MRI sensors (coils)

• In MRI, the sensor observations correspond to Fourier transform (k-space) 

• Parallel MRI acquires fewer k-space samples than Nyquist frequency to 

speed up the scan and exploits the redundancies in samples from the coils 

to get a good quality image

• GRAPPA estimates missing samples in the k-space by assuming they are 

linearly dependent on their neighboring acquired k-space samples

• Residual RAKI is a neural network approach to improve GRAPPA by 

learning potentially non-linear dependence

• Residual RAKI uses a CNN to estimate noise in the linear GRAPPA 

reconstruction

• Neural network approaches like Residual RAKI use real-valued weights 

to process the complex k-space as 2-D real data

• This discards the rich algebraic structure of the complex input

• Some previous works have used complex arithmetic in neural networks 

to address this

• But they try to denoise poor-quality reconstructions in image domain. 

When the noisy reconstructions have lot of artefacts, fine details may be 

lost, thus making it important to use k-space data as input.

• Also they rely on huge datasets for training

• We explore complex arithmetic in the Residual RAKI (rRAKI) CNN which 

operates on k-space in a single MRI scan 

• The contributions of our work are –

1. an end-to-end complex-valued neural network called Complex rRAKI

2. We propose a novel activation function, the PlaneReLU, which is a 

generalized version of the ReLU activation function on the complex 

plane

Complex rRAKI Model

• The Complex rRAKI uses complex convolution and proposed PlaneRELU 

activation function blocks

• Complex convolution utilizes 50% fewer parameters than real convolution 

with the same input and output size

• The proposed PlaneReLU function is defined as follows

𝑃𝑙𝑎𝑛𝑒𝑅𝑒𝐿𝑈 𝑥 + 𝑖𝑦 = ቐ
𝑥 + 𝑖𝑦, 𝑖𝑓 𝑎𝑥 + 𝑏𝑦 + 𝑐 ≥ 0
𝑎+𝑏+𝐶

𝛼
𝑥 + 𝑖𝑦 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑎, 𝑏, 𝑐 ∈ ℝ are learnable parameters and 𝛼 ∈ ℝ is a hyperparameter 

that we set to 3

• The PlaneReLU divides the complex plane into two parts about a 

learnable line 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 like the ReLU divides the real line into two 

parts about the fixed origin

• It takes the firing decision based on both input magnitude and phase 

unlike other complex-valued activation functions which take the firing 

decision based on magnitude or phase information only

Metric PSNR NRMSE SSIM

fastMRI Brain Dataset

rRAKI 31.51 ± 1.3 0.20 ± 0.041 0.84 ± 0.036

Complex rRAKI 31.83 ± 0.79 0.23 ± 0.08 0.87 ± 0.027

fastMRI Knee Dataset 

rRAKI 28.7 ± 0.73 0.45 ± 0.09 0.60 ± 0.07

Complex rRAKI 29 ± 0.49 0.35 ± 0.047 0.67 ± 0.05

Target             rRAKI  Complex rRAKI
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