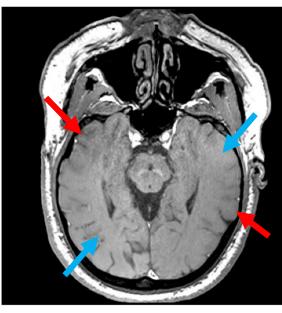
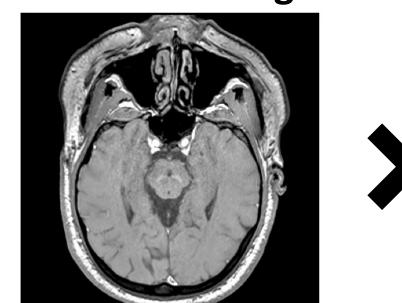
Bias Field Correction in MRI With Hampel Noise Denoising Diffusion Probabilistic Model


¹Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of KOREA ²Department of Neuropsychiatry, Pusan National University, Yangsan hospital, Yangsan, Republic of KOREA

Introduction


- The bias field causes to reproduce and robustness to quantitative \bullet analysis.
 - ✓ Bias field \rightarrow A slow varying multiplicative field
- ✓ Intensity inhomogeneity by bias field \rightarrow same tissue, but different intensities.
- N4 bias field correction (Tustison, et al. IEEE TMI, 2010) has been commonly

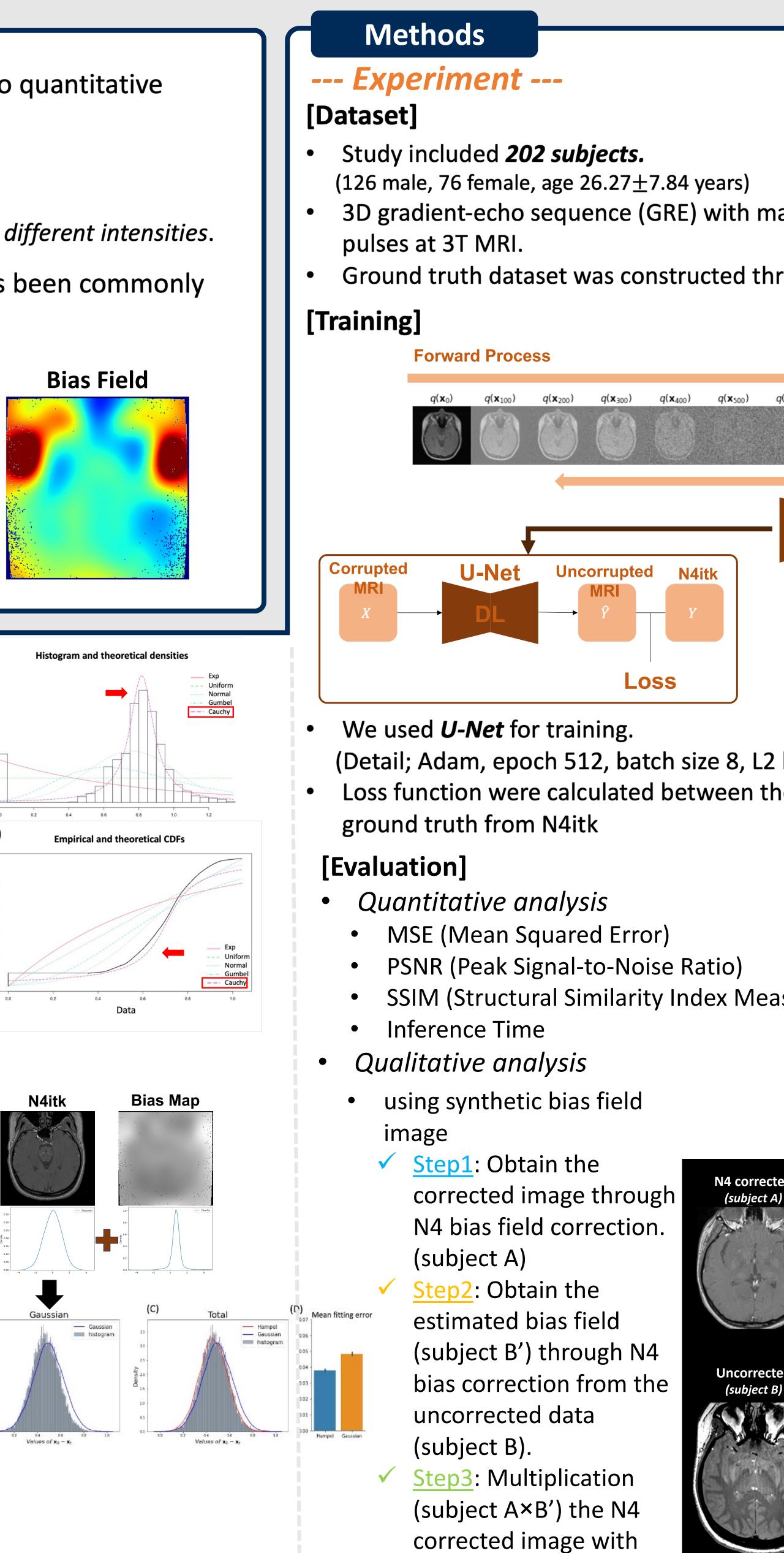
used for bias field correction but has limitations.

Observed Image

Corrected Image

Bias field map

(A)

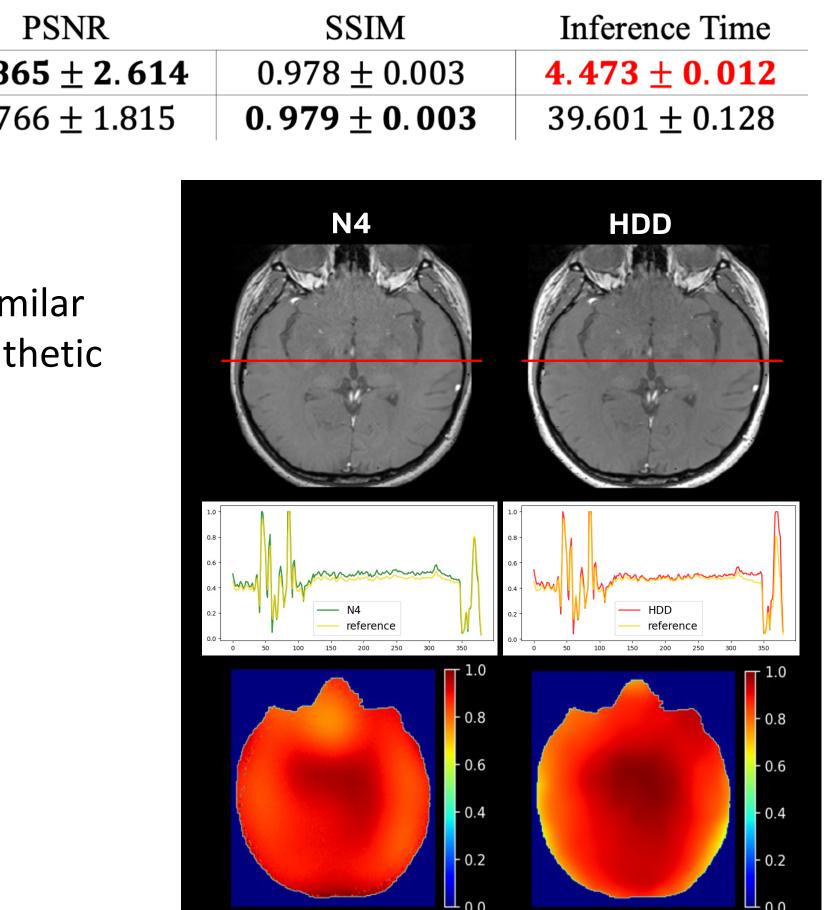

--- Theory ----

- The bias field map was analyzed to find a distribution that accurately represents its intensity.
- The Cauchy-Lorentz distribution* was discovered to be the best fit for describing the intensity of the bias field.

* Cauchy-Lorentz Distribution: $F_{c}(x; x_{0}, \gamma) = \frac{1}{\pi \gamma} \left[\frac{1}{(x - x_{0})^{2} + \gamma^{2}} \right]$ $= F_c(x; 0.6332, 0.0274)$

The Hampel mixture distribution* Original represents disrupted image intensity. Mean fitting error between histogram and probability function is calculated. The mean fitting error is lower in Hampel Distribution 📒 Hampel function compared to N4. We propose *Hampel Denoising* Hampel histogram Diffusion Model (HDDnet) conceived to model inhomogeneities by Cauchy-Lorentz distribution Values of x₀ - x_r * Hampel Distribution: $F_h(x,\alpha) = (1-\alpha)F_n(x;0,1) + \alpha F_c(x;0.6332,0.0274)$ $H(\alpha, x_0, \gamma) = H(1e - 05, 0.6332, 0.0274)$

JunHyeok Lee, Junghwa Kang¹, Yoonho Nam¹, Tea Young Lee²



estimated bias field

	Results	
nagnetization transfer (MT) hrough <u>N4 bias field correction</u> .	[Quantitative analysis]• HDDnet outperformed Gaussian random noise in terms of MSE, SSIM.SSIM.DistributionMSEPSNRSSIMGaussian0.0004 ± 0.000332.486 ± 2.6490.950 ± 0.002	PSNR, and ference Time 471 ± 0.030 473 ± 0.012
		nds to correct age of 4 aference Time
2 loss, sigmoid) the prediction images and easure)		
ected Step 1 f(x)	 Discussion [Summary] The proposed method involves replacing Gaussian noise with Hampel noise, a mixture of Gaussian and Cauchy-Lorentz distributions. The method offers improved robustness and automatic parameter settings compared to N4 for bias field correction. [Limitation and Future work] Comparisons with other correction methods need compared. The quantitative analysis conducted to verify the end of the proposed method of the proposed method. 	MR bias field d to be should be effectiveness

