S085 - Caption generation from histopathology whole-slide images using pre-trained transformers

Bryan Cardenas Guevara, Niccolò Marini, Stefano Marchesin, Witali Aswolinskiy, Robert-Jan Schlimbach, Damian Podareanu, Francesco Ciompi

Show abstract - PDF - Reviews

The recent advent of foundation models and large language models has enabled scientists to leverage large-scale knowledge of pretrained (vision) transformers and efficiently tailor it to downstream tasks. This technology can potentially automate multiple aspects of cancer diagnosis in digital pathology, from whole-slide image classification to generating pathology reports while training with pairs of images and text from the diagnostic conclusion. In this work, we orchestrate a set of weakly-supervised transformer-based models with a first aim to address both whole-slide image classification and captioning, addressing the automatic generation of the conclusion of pathology reports in the form of image captions. We report our first results on a multicentric multilingual dataset of colon polyps and biopsies. We achieve high diagnostic accuracy with no supervision and cheap computational adaptation.
Hide abstract


Short paper

Schedule: Wednesday, July 12: Virtual poster session - 8:00–9:00
Poster location: Virtual only

Can't display slides, your browser doesn't support embedding PDFs.

Download slides